

Products CATALOG

- Thermocouple Extension/Compensating Cables
 Thermocouple Wires
 Heat Resistant Wires

Message

The temperature measurement and control has rapidly become more and more important along with the great advances of all of the industries in recent years. Especially, the Thermocouple Extension and Compensating Cables are indispensable for heating management in terms of the automation and the labor saving such as steel, chemistry, electric power, industrial waste disposal, the semiconductor mono-crystalline refinements, and the synthetic resin molding machines, etc. Ever since its establishment in 1950, Our company, a professional manufacturer of the Thermocouple Extension and Compensating Cables has been dedicated to responding to our customers promptly and adequately, catching accurately the needs in time with our customers by cultivating the technological ability and the consistent system of the quality control through the manufacturing achievements over many years. We shall satisfy our customers not only with the Japanese standard (JIS) but also the American standard (ASTM) and the European standard (IEC), and offer our products that can manage and control the temperature safely and accurately on site including all the plants in the world in the future. Additionally, in this regard we must not be satisfied with the current achievements but continue to strive unremittingly to contribute to the society as a manufacturer.

Thermocouple Extension/Compensating Cables

Thermocouple Extension / Compensating Cables

■ What is Thermocouple Extension/Compensating Cable? How to Choose a Model · · · · · · ·	• P3-6
Single Pair	
PVC Types (Temp.Range: up to 60°C~105	ິດ)
Polyvinyl Chloride PVC Insulation and Sheath, Flat/Round shape, without or with Shield (BA, SA, BT)	
General PVC,(Temp.60°C) VVF / VVF-BA / VVR / VVR-SA	P7-8
Special Heat-resistant PVC,(Temp.105°C) SHVVF / SHVVF-BT	Р9
General or Flame-retardant General PVC,(Temp.60°C) FR-VVR / FR-VVR-SA	P10

Glass Fiber Types (Temp.200°C)

Glass Fiber Braided Insulation and Sheath, Flat or Round Shape, without or with Shield (BT)

Heat Resistance (Temp.200°C) GGBF/GGBF-BT/GGBR/GGBR-BT

FEP Types (Temp.200°C)

Teflon® (FEP) Insulation and Sheath, Flat or Round shape, without or with Shield (BT)

Heat Resistance (Temp.200°C) FEPFEPF / FEPFEPF-BT/	P13-1
FEPFEPR / FEPFEPR-BT	

Other Types (Temp.Range: up to 75 ~ 135°C)

Other Materials of Insulation and Sheath	
Polyethylene (Temp.75°C),Round Shape,with Shield(SA)	P15
Halogen-free Polyolefin (Temp.75°C), Round Shape,with Shield(SA) EMEMR-SA	P15
Flame-retardant Elastomer (Temp.135°C), Round Shape,without or with Shield(BT) FR-SPHR / FR-SPHR-BT	P16

Flexible/Vibration-proof Heat Resistant Types (Temp.Range: up to 60 ~ 200°C) Flexible Heat-resistant Materials of Insulation and Sheath,Round Shape. 200°C FEP Insulation, Flexible Fluorine-Contained Heat-resistant Rubber (FRW) Sheath P17 KX-1-Toughler P17 90°C Special Polyethylene Insulation, Flame-retardant Special Elastomer Sheath P17 KCB Tough EV3 60°C Special Polyethylene Insulation, Flexible PVC Sheath P17

KCB Sofura

FEP(UL) Type (Temp.200°C)

UL Certificated FEP Insulation and Sheath Heat Resistance (Temp.200°C)

FEPFEPF-BT(UL)

P18

P19-20

P21-22

Multi-Pair(twisting)

PVC Types (Temp.Range: up to 60 ~ 105°C)

Polyvinyl Chloride PVC Insulation and Sheath, Round Shape, with Shield (SA, SL)

General or Flame-retardant General PVC, with shield (SA) (Temp.60°C) VVR-SA / FR-VVR-SA

General or Flame-retardant General PVC, with shield (SL),(Temp.60°C) VVR-SL / FR-VVR-SL

FEP Types (Temp.200°C)

FEP Insulation and Sheath, Round Shape, with Shield (BT)

Heat Resistance (Temp.200°C)	D 00 0
FEPFEPR-BT	P23-24

Others (Temp.75°C)	
Other Materials of Insulation and Sheath,Round Shap Shield (SA)	e,with
Polyethylene (Temp.75°C) EER-SA	P25-26
Halogen-free Polyolefin (Temp.75°C) EMEMR-SA	P25-26
■ Reference Technical Materials of Thermocouple Extension/Compensating Cables · · · · · · · · · ·	P27-29

Thermocouple Wires (Duplex Type)

What is Thermocou	ple Wire(Duplex Type)?
-------------------	------------------------

How to Choose a Model	•• P30
Types of Thermocouple Wires(Duplex	Type)
Heat-resistant PVC Insulation and Sheath,Flat Shape HVVF Heat Resistance(Temp.80°C)	P31
Glass Fiber Braided Insulation and Sheath, Flat Shape GGBF Heat Resistance(Temp.200°C)	P31
Silica Glass Fiber Braided Insulation and Sheath, Flat Shape SSBF Heat Resistance(Temp.400°C)	P32
Alumina Fiber Braided Insulation and Sheath, Flat Shape CCBF Heat Resistance(Temp.Range.450~750°C)	P32
FEP Insulation and Sheath,Flat Shape FEPFEPF Heat Resistance(Temp.200°C)	P33
UL Certificated FEP Insulation and Sheath,Flat Shape FEPFEPF(UL) Heat Resistance(Temp.200°C)	P33
FEP Insulation and Sheath,Flat Shape,with a Molding Cover FEPFEPF(M) Heat Resistance(Temp.200°C)	P34
■ Reference Technical Materials of Thermocouple Wires (Duplex Type) · · · · · · · · · · · · · · · · · · ·	P34-35

Heat Resistant ______

What is Heat-resistant Wire?	••• P36
Types of Heat Resistant Wires	
Flexible Fluorine-Contained Heat-resistant Rubber Insulation 600V FRW Heat Resistance(Temp.200°C)	P36
Silicon Rubber Insulation and Glass Fiber Braided Sheath 600V LKGB Heat Resistance(Temp.180°C)	P37
Teflon® Insulation FEP/PFA/ETFE/PTFE Heat Resistance (Temp.Range.150 ~ 260°C)	P38
Fluorinated Ethylene Propylene Insulation(FEP) and Flexible Fluorine-Contained Heat-resistant Rubber Sheath (FRW) FF Toughler Heat Resistance(Temp.200°C)	P39
J	
Glass Fiber Braided Insulation NiGB Max.Heat Resistance (Temp.300°C)	P40
Glass Fiber Braided Insulation NiGB Max.Heat Resistance (Temp.300°C) Silica Glass Fiber Braided Insulation NSBL/28NSBL Max.Heat Resistance (Temp.400°C)	P40 P41-42
Glass Fiber Braided Insulation NiGB Max.Heat Resistance (Temp.300°C) Silica Glass Fiber Braided Insulation NSBL/28NSBL Max.Heat Resistance (Temp.400°C) Mica-Tape Double Wrapped and Silica Glass Fiber Braided, Special Heat-resistant Varnished Insulation NSBL 6x4-1 Max.Heat Resistance (Temp.400°C)	P40 P41-42 P43
Glass Fiber Braided Insulation NIGB Max.Heat Resistance (Temp.300°C) Silica Glass Fiber Braided Insulation NSBL/28NSBL Max.Heat Resistance (Temp.400°C) Mica-Tape Double Wrapped and Silica Glass Fiber Braided, Special Heat-resistant Varnished Insulation NSBL 6x4-1 Max.Heat Resistance (Temp.400°C) Mica-Tape Double Wrapped and Silica Glass Fiber Braided Insulation NSBL 6x5 Max.Heat Resistance (Temp.500°C)	P40 P41-42 P43 P44

Thermocouple Extension/ Compensating Cables

Thermocouple Extension/Compensating Cable is a lead cable used to connect between Thermocouple Sensor and Thermometer for measuring the temperature We would like to introduce our products of Thermocouple Extension/Compensating Cables as follows:

● Flame-retardant (● IEC 60332-3 Cat.A , ● IEC 60332-3 Cat.C)

2 3 Types, Standards and Colors

There are many types of Thermocouple Extension/Compensating Cables. Please choose the type corresponding with Thermocouple Sensor type which is chosen according to Temperature Range(°C) and the Accuracy(Class & Tolerance).

	Types	Conductor Composition							
Sensors		Positive (PX)	Negative (NX)	Colors : IEC Standard (60584-3-2007)		Colors: ASTM E230-2012			
	кх	Chromel®	Alumel®		Green(+) White(-) Green(Sheath)		Yellow(+) Red(-) Yellow(Sheath)		
К	KCA	Iron	Constantan		Green(+) White(-) Green(Sheath)				
	КСВ	Copper	Constantan		Green(+) White(-) Green(Sheath)				
J	JX	Iron	Constantan		Black(+) White(-) Black(Sheath)		White(+) Red(-) Black(Sheath)		
Т	ТХ	Copper	Constantan		Brown(+) White(-) Brown(Sheath)		Blue(+) Red(-) Blue(Sheath)		
E	EX	Chromel®	Constantan		Violet(+) White(-) Violet(Sheath)		Purple(+) Red(-) Purple(Sheath)		
R	RCA	- Copper	Copper	Copper-Nickel		Orange(+) White(-) Orange(Sheath)	0	Black(+) Red(-)	
	RCB		alloy		Orange(+) White(-) Orange(Sheath)		Green(Sheath)		
S	SCA	Copper	Copper Copper-Nickel alloy	Coppor	Copper-Nickel		Orange(+) White(-) Orange(Sheath)		Black(+) Red(-)
	SCB				Orange(+) White(-) Orange(Sheath)		Green(Sheath)		
В	BC	Copper	Copper		Gray(+) White(-) Gray(Sheath)		Gray(+) Red(-) Gray(Sheath)		
Ν	NX	Nickel- Chromium- Silicon	Nickel-Silicon		Pink(+) White(-) Pink(Sheath)		Orange(+) Red(-)		
	NC	Copper-Nickel alloy	Copper-Nickel alloy		Pink(+) White(-) Pink(Sheath)		Urange(Sheath)		

4 5 Division Symbols(Class & Tolerance) and Materials of Insulation and Sheath

Accuracy(Class &Tolerance) is influenced by the wiring environment(temperature in particular) and the material of insulation. Please choose a suitable kind of material for Insulation from below item ⁽⁵⁾ and a Division Symbol according to the Standards in below item ⁽⁴⁾.

Oivision Symbols(Class & Tolerance)

	Division	Materials used		
	IEC St.	ASTM St.	mainly	
Precision Class	1-G	SP	PVC	
Normal Class	2-G	ST	PVC	
Precision Class	1-H	SP	Glass Eiber	
Normal Class	2-H	ST	UIDSS TIDEI	
Precision Class	1-S	SP	Toffon®	
Normal Class	2-S	ST	TEIION®	

Remarks:

1)IEC standard: G(General), H(Heat-resistance), S(Special heat-resistance) 2)ASTM Standard: SP(Special Tolerance), ST(Standard Tolerance)

6 Types of Shapes

Please confirm the wiring area and environment and then choose the shape below.

Ih

Waterials	of insulation and 5	lieaui
Symbols	Materials of Insulation & Sheath	Temperature Range (°C)
V	General PVC(Polyvinyl chloride)	up to 60
HV	Heat-resistant PVC	up to 80
SHV	Special heat-resistant PVC	up to 105
TV	Cold-proof PVC	bottom to - 20
FR-V	Flame-retardant general PVC	up to 60
FR-HV	Flame-retardant heat- resistant PVC	up to 90
FR-SHV	Flame-retardant Special heat-resistant PVC	up to 105
Е	Polyethylene	up to 75
FR-E	Flame-retardant Polyethylene *1	up to 75
С	Cross-linked Polyethylene	up to 105
EM	Non-Halogen (Halogen- free) Polyolefin, (Eco material)	up to 75
GB	Glass Fiber	up to 200
FEP	Fluorinated Ethylene Propylene	up to 200
ETFE	Ethylene- TetraFluoroEthylene	up to 150
PFA	PerFluoroAlkoxy	up to 260

6 Materials of Insulation and Sheath

*1: Flame-retardant Polyethylene applies to IEC 60332-1 only

7 Types of Shields

Usually wired together with other kinds of cables of high voltage and multi-electric current, when approaching to the electrical machinery and apparatus, temperature indicating error and variation from inductive interference can occur in Thermocouple Extension/Compensating Cable which transmits a tiny voltage and a feeble signal during measurement. In order to remove the electrical noise, metal Shields are used to eliminate those inductive interference.

1)Electro-static Shields

SI

These types of shields are used to eliminate Electro-static inductive disorder from the voltage of power cables.

nields	BA	Plain Copper Wire Braided Shield	Excellence in flexibility and shielding effect. They are used	
	BT	Tinned Copper Wire Braided Shield	mainly in a thin and Flat shape cable.	>
	SA	Copper Tape Shield (individual, used both in Single and Multi-Pair)	SA (a piece of 0.05-0.1mm Copper	
	EDSA	Copper Tape Shield(individual) + Copper Tape Shield(Overall, used in Multi-Pair)	shields. Excellence in shielding	
	ESA	Copper Tape Shield (individual, used in Multi-Pair only)	Multi-Pair of Round shape cable.	•
	SL	Alumi-Mylar Tape with a Drain Wire Shield (individual, used mostly in single pair)	la in limbur and more flavible	
	EDSL	Alumi-Mylar Tape with a Drain Wire Shield (individual) + Alumi-Mylar Tape with a Drain Wire Shield (Overall, used in Multi-Pair)	than Copper Tape. It is a kind of economical shield, used mainly in a Round shape cable	
	ESL	Alumi-Mylar Tape with a Drain Wire Shield(individual, used in Multi-Pair only)		

Applicable for Steel Tape Shield(SF), Tinned Copper Wire Braided + Steel Wire Braided Shield(BTF)

2)Electro-magnetic Shields

These types of shields are used to eliminate Electro-magnetic inductive disorder because of the variation of electric currents of power cables

Shields	SAF	Copper Tape + Steel Tape	SAF is composed of a piece of 0.05-0.1mm voltage- inductive Copper Tape and a piece of magnetic Steel Tape. It can eliminate Electro-magnetic inductive disorder due to	>
			an electric current from outside.	
	BAF	Plain Copper Wire + Steel Wire Braided	BAF is composed of a piece of 0.05-0.1mm of voltage- inductive Copper Wires and magnetic Steel Wires. It can eliminate Electro-magnetic inductive disorder because of an electric current from outside. BAF is more flexible than SAF.	

1011 Conductor Size and Combination

The characteristics of Thermal-Electro-Motive-Force(EMF) converted into temperature in a Thermocouple Thermometer is not influenced by the thickness of the conductor. Please choose a suitable conductor size and its combination after considering the mechanical characteristics such as a wiring environment, distance, flexibility, etc.

Nominal Sectional Area	Conductor Combination	Main wiring places and Features
2.3SQ	7/0.65	Wiring to a long distance, used mainly in a big plant
2.0SQ	7/0.6	Similar to 7/0.65, but the price is a little cheaper
1.5SQ	7/0.52	Mostly used in a big plant of overseas
1.3SQ	4/0.65	Wiring to a long distance, wired mainly inside a big equipment
1.25SQ	7/0.45	Similar to 4/0.65, a little flexibility, the diameter is compact, too
1.25SQ	40/0.2	Flexibility, used mostly in Cabtire specification
1.0SQ	7/0.44	Mostly used in a big plant of overseas
0.75SQ	24/0.2	Flexibility, used mostly inside an equipment
0.75SQ	30/0.18	More flexible than 24/0.2, used mostly inside an equipment
0.5SQ	7/0.32	Wiring to a short distance and a narrow place, used inside equipment, too
0.5SQ	7/0.3	Wiring to a short distance and a narrow place, used inside equipment, too
0.5SQ	20/0.18	Flexibility, used mostly inside an equipment

B Types of Armors

strength to cables.

rmors	Stainless-Steel Wire(OBS)	As a protective layer, the most commonly used to prevent			
	Tinned Copper Wire (OBT)	damage to cables. Nominal 0.12 \sim 0.20 mm diameter Stainless- Steel Wire (OBS), Tinned Copper Wire (OBT) and Steel Wire (OBF) are applied as a braided Armor in a density of			
	Steel Wire (OBF)	above 90% around the surface of cables.			
	Galvanized Steel Wire, PVC (WAZV)	For the purpose of preventing the damage to cables buried directly to the ground, Armor of Galvanized Steel Wire (WAZV) or (WAZE) is used widely as a protective layer, playing a role as a tension plate for sharing the burden which adds tension to the cable during or after the installation of the Submarine Cable and the cable for standing stakes. The surface of Inper			
	Galvanized Steel Wire, PE (WAZE)	sheath of the cable is spiraled by some of the suitable size of Galvanized Steel Wires according to the outer diameter and the tension of the cable. For the sake of anti-rust and anti-rodent, on the surface of Armor, PVC (WAZV) or PE (WAZE) Outer Sheath is covered.			
	Galvanized Steel-Tape, PVC (TAZV)	For the purpose of preventing the damage to the cable buried directly to the ground, Armor of Galvanized Steel Tape (TAZV) or (TAZE) is used widely as a protective layer. The surface of Inner Sheath of the cable is wrapped by two pieces of the suitable thickness Galvanized Steel Tape corresponding to the			
	Galvanized Steel-Tape, PE (TAZE)	outer diameter of the cable: one of the Galvanized Steel Tapes is helically applied over the Inner Sheath, and then the other is wrapped, overlapping the first one. In general, for the purpose of anti-rust and anti-rodent, the surface of the Armor, PVC (TAZV) or PE (TAZE) Outer Sheath is covered.			
	Galvanized Steel Corrugated Tube, PVC (MAZV)	Armor of Galvanized Steel Corrugated Tube is manufactured as follows: First, a piece of Galvanized Steel tape is affixed to the surroundings of the cable, and then its joints are welded continuously. At last, produce a linear corrugated pattern on the surface of the tape. Armor of Galvanized Steel Corrugated Tube is applied for the cable buried directly to the ground for the purpose of making a cable availant is compressive			
	Galvanized Steel Corrugated Tube, PE (MAZE)	strength and easy to be used for the construction because of its features: lightness and flexibility. For the purpose of anti- corrosion and preventing attacks by termites, rats and other vermin, on the surface of Armor, PVC (MAZV) or PE (MAZE) Outer Sheath is covered. In addition to that, there is an effect as an electro-magnetic shielding layer.			

9 Pair

Each pair consists of 2cores called 1P which is composed of a Positive (PX) and a Negative (NX).

Pair	1Pair	2Pairs	3Pairs	4Pairs	5Pairs	10Pairs
Symbols	1P	2P	ЗР	4P	5P	10P

Armor is applied for the purpose of protecting the surface of cable from mechanical damage and supporting the mechanical

Insulation and Sheath: General PVC, Shape: Flat (F)

Type (P3) - Division Symbol (P4) -VVF

Features: Excellence in Damp-proof, Water-proof

Applicable for some other kinds of PVC materials as follows:

- Heat-resistant PVC(HV)
- Special heat-resistant PVC(SHV)
- Cold-proof PVC(TV)

Flame-retardant PVC Sheath(FR-VVF,FR-HVVF,FR-SHVVF)

Conductor	Nominal sectional area (SQ)	0.5	0.75	1.0	1.25	1.3	1.5	2.3
	Conductor (No./mm)	7/0.32	24/0.2	7/0.44	7/0.45	4/0.65	7/0.52	7/0.65
	Nom.O.D (mm)	0.96	1.13	1.32	1.35	1.57	1.56	1.95
Insulation	Nom.thick (mm)	0.40	0.50	0.60	0.60	0.60	0.60	0.60
	Approx.O.D (mm)	1.76	2.13	2.52	2.55	2.77	2.76	3.15
Sheath	Nom.thick (mm)	0.50	0.80	1.00	1.00	1.00	1.00	1.00
	Approx.O.D (mm)	2.8×4.6	3.8 × 5.9	4.6×7.1	4.6×7.1	4.8×7.6	4.8X7.6	5.2×8.4
Electric	Voltage resistance (V/min)	AC500	AC500	AC500	AC500	AC500	AC500	AC500
Characteristics	Insulation resistance (M Ω km)	Min. 500	Min. 500	Min. 500	Min. 500	Min. 500	Min. 500	Min. 500
Max. Length (m)		2000	2000	2000	2000	2000	2000	2000
Weight (kg/k	km)	23	37	54	56	61	65	84

Rated Temp.Range 60~105°C

Insulation and Sheath: General PVC, Shape: Round (I
Type (P3) – Division Symbol (P4) – VVR

Features: Excellence in Damp-proof, Water-proof

Applicable for some other kinds of PVC materials as follows:

- Heat-resistant PVC(HV)
- Special heat-resistant PVC(SHV)
- Cold-proof PVC(TV)
- Flame-retardant PVC Sheath(FR-VVR,FR-HVVR,FR-SHVVR)

Conductor	Nominal sectional area (SQ)	0.5	0.75	1.0	1.25	1.3	1.5	2.3
	Conductor (No./mm)	7/0.32	24/0.2	7/0.44	7/0.45	4/0.65	7/0.52	7/0.65
	Nom.O.D (mm)	0.96	1.13	1.32	1.35	1.57	1.56	1.95
Insulation	Nom.thick (mm)	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Approx.O.D (mm)	2.16	2.33	2.52	2.55	2.77	2.76	3.15
Sheath	Nom.thick (mm)	1.00	1.00	1.00	1.00	1.00	1.00	1.10
	Approx.O.D (mm)	6.8	7.1	7.5	7.5	8.0	8.0	8.9
Electric	Voltage resistance (V/min)	AC500						
Characteristics	Insulation resistance (M Ω km)	Min. 500						
Max. Length (m)		2000	2000	2000	2000	2000	2000	2000
Weight (kg/k	km)	50	53	66	68	76	81	106

Insulation and Sheath: General PVC, Shape: Flat (F), Shield: Plain Copper Wire Braided (BA)

Type (P3) - Division Symbol (P4) -VVF-BA

Rated Temp.Range 60~105°C

Features: Excellence in Electro-static effect, Damp-proof, Water-proof Applicable for some other kinds of PVC materials as follows:

- Heat-resistant PVC(HV)
- Special heat-resistant PVC(SHV)
- Cold-proof PVC(TV)
- Flame-retardant PVC Sheath(FR-VVF,FR-HVVF,FR-SHVVF)

Applicable for Tinned Copper Wire Braided Shield(BT)

Conductor	Nominal sectional area (SQ)	0.5	0.75	1.0	1.25	1.3	1.5	2.3
	Conductor (No./mm)	7/0.32	24/0.2	7/0.44	7/0.45	4/0.65	7/0.52	7/0.65
	Nom.O.D (mm)	0.96	1.13	1.32	1.35	1.57	1.56	1.95
Insulation	Nom.thick (mm)	0.40	0.50	0.60	0.60	0.60	0.60	0.60
	Approx.O.D (mm)	1.76	2.13	2.52	2.55	2.77	2.76	3.15
Shield	Nom.thick (mm)	0.30	0.30	0.3	0.30	0.30	0.30	0.30
Sheath	Nom.thick (mm)	0.50	0.80	1.00	1.00	1.00	1.00	1.00
	Approx.O.D (mm)	3.4 × 5.2	4.4×6.5	5.2x7.7	5.2×7.7	5.4×8.2	5.4x8.2	5.8 × 8.9
Electric Characteristics	Voltage resistance (V/min)	AC500	AC500	AC500	AC500	AC500	AC500	AC500
	Insulation resistance (M Ω km)	Min. 500	Min. 500	Min. 500	Min. 500	Min. 500	Min. 500	Min. 500
Max. Length (m)		2000	2000	2000	2000	2000	2000	2000
Weight (kg/k	km)	35	51	68	70	78	85	103

Insulation and Sheath: General PVC, Shape: Round (R), Shield: Copper Tape (SA) Type (P3) - Division Symbol (P4) -VVR-SA

Features: Excellence in Electro-static effect, Damp-proof, Water-proof Applicable for some other kinds of PVC materials as follows: Heat-resistant PVC(HV)

- Special heat-resistant PVC(SHV)
- Cold-proof PVC(TV)

Flame-retardant PVC Sheath(FR-VVR,FR-HVVR,FR-SHVVR)

Applicable for other types of shields:
Plain Copper Wire Braided Shield (BA) Tinned Copper Wire Braided Shield (BT)

Remarks: Many sizes are on stock sale.

Conductor	Nominal sectional area (SQ)	0.75	1.0	1.25	1.3	1.5	2.3	AWG16
	Conductor (No./mm)	24/0.2	7/0.44	7/0.45	4/0.65	7/0.52	7/0.65	1/1.29
	Nom.O.D (mm)	1.13	1.32	1.35	1.57	1.56	1.95	1.29
Insulation	Nom.thick (mm)	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Approx.O.D (mm)	2.33	2.52	2.55	2.77	2.76	3.15	2.49
Shield	Nom.thick (mm)	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Sheath	Nom.thick (mm)	1.00	1.00	1.00	1.10	1.10	1.10	1.00
	Approx.O.D (mm)	7.4	7.8	7.9	8.5	8.5	9.3	7.7
Electric Characteristics	Voltage resistance (V/min)	AC500						
	Insulation resistance (M Ω km)	Min. 500						
Max. Length (m)		2000	2000	2000	2000	2000	2000	2000
Weight (kg/l	km)	75	83	85	98	104	127	88

